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Abstract
A brief review is given of the status of crystallographic direct methods for
solving surface structure problems. The basic concepts of using the a priori
information that the scattering comes from atoms to generate self-consistent
equations and statistical constraints upon the phases are described. The use of
a genetic algorithm to perform a search over possible phases is then discussed.
Finally, solved cases in projection as well as the status of three-dimensional
solutions for surfaces with a representative example are detailed.

1. Introduction

One of the most fundamental issues in surface science is determining the atomic scale structure.
Over the years a standard methodology has been developed: experimental data are compared
quantitatively (or qualitatively) with various different models and the best fit is deemed to be
the correct structure. Unfortunately this approach has a fundamental problem—it requires that
the true structure is very similar to one of the models chosen. Unless this is true no scientifically
valid conclusions can be reached.

If the surface is very simple so that there are only two or three different possibilities, for
instance oxygen adsorbed at a threefold or a bridging site, it is easy to ensure that something
close to the correct model is used. However, if the structure is more complicated, for instance
with more than five unique atomic sites (i.e. sites which are not related by any symmetry
operations) the number of possibilities becomes unrealistically large. One has to have a
method that will reduce the possibilities to a manageable number.

Over the last few years we have been developing crystallographic direct methods to
overcome this problem [1–16]. (Independent of our work a slightly different direct methods
approach has also proven to be viable for surfaces [17–20], although we will not discuss
this here.) The basic idea is that one exploits the fact that the scattering comes from atoms
to develop relationships, which connect the phases of the diffracted beams in a kinematical
(i.e. single-scattering) measurement of the amplitudes using either surface x-ray diffraction or
transmission electron diffraction. The phases do not need to be highly accurate; in general a
root-mean-square error of 10–20 degrees is more than adequate. These approximate phases,
coupled with the measured amplitudes, can then be used to produce an estimate (called a map)
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of the charge density (with x-rays) or electrostatic potential (with electrons). Peaks in these
maps correlate with the true atomic positions with relatively small errors, typically less than
0.1 Å. This is a standard approach in bulk crystallography, where it has been used with great
success for many years. It is fair to state that it is currently almost trivial to solve a bulk
structure if it does not have too many atoms, i.e. 100–200 unique sites. Few if any surface
structures are even close to this complicated, which raises the question of why solving them
should not be trivial.

In bulk crystallography one can routinely record more than 90% of all the possible
diffraction spots to a resolution of 1 Å with good accuracy. If some are missed in one
measurement run, one can always go back and measure them a second time; bulk crystals
rarely change their structure when left to sit for days or weeks. One also has independent
methods of determining the number of atoms in the structure. We do not have these luxuries
with surfaces. Many of the surface diffraction spots overlap bulk spots which are orders
of magnitude larger, and this presents special problems in handling them. While it is not
uncommon for 90% of the reflections in two dimensions to be available, collecting three-
dimensional data is very time consuming and often only 10–20% are measured at present. In
most cases the measurement accuracies are much worse than what is considered acceptable for
bulk materials. In addition, the samples are very sensitive to monolayer contamination, often
rather poorly ordered, containing high concentrations of surface defects and multiple phases.

The sparsity of the number of measurements is one of the critical issues with surface
diffraction data. Classical direct methods assume that all the strong reflections have been
measured and only consider relationships between the measured reflections. (In effect,
unmeasured reflections are taken to have zero intensity.) Therefore they can fail if there
are large, unmeasured reflections.

A second major difference from bulk crystallography is the absence of good information
about how many atoms there are in the reconstruction; in bulk crystallography this is almost
always known ahead of time. If there is an adsorbate, one may know the coverage reasonably
well, but often there are ambiguities. One rarely if ever knows how many atoms with the bulk
composition are participating in the reconstruction. In any refinement against measured data
one can almost always add more atoms (more variables) and improve the fit.

Another issue is the question of statistical bias due to the experimental procedure. If all
the intensities were measured, we would have a representative sample. Often the experimental
procedure is to perform a rather complete analysis in two dimensions, then analyse selected
rods in the third. These will often be the stronger ones, which weights the measurements
towards stronger reflections at the expense of the weaker ones.

Despite all these differences and additional complications for surfaces, with some care
crystallographic direct methods can be applied to them. The following sections will describe
some of the basics, some of the special aspects of solving a surface structure in three dimensions
followed by an example and a brief discussion.

2. Basics

The principle behind crystallographic direct methods is to reduce the possible phase values by
using a priori information as constraints; for a more detailed description of the mathematics
see [15] and [21–23] for some general references on direct methods. The constraints fall into
two classes: those based upon the fact that the scattering comes from atoms, and others based
upon probabilities for random distributions of atoms. In particular:

(a) We know the charge density for individual atoms, and to a very high degree of accuracy
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we can ignore bonding effects and state that the charge density is some linear combination
of the isolated atom charge densities, each atom being at some different location in the
sample.

(b) We know that the charge density has to be positive.
(c) If the data have a reasonable resolution (corresponding to a reconstruction with about a

0.1 nm resolution) we know that most of the charge density is zero—the spaces between
the atoms.

(d) If we are trying to solve a structure in three dimensions, we know that the atoms are only
significantly displaced from their bulk positions in a narrow region near the surface.

All these are additional types of information that we can exploit in some fashion. The oldest,
and simplest is (a) above, which is known as atomicity. Consider the case of a structure with
only one type of atom. In reciprocal space the structure factor can be written as

F(k) =
∑

l

f (k) exp(2π ik · rl) exp(−2Bk2) (1)

for atoms at the positions rl with f (k) the known atomic scattering factor. Here B is the
isotropic temperature factor for each atom. Whereas in bulk crystallography this can often be
fitted in the initial stages of the analysis using a Wilson plot [24], for surfaces this rarely seems
to work and a reasonable estimate is good enough. Dividing by Nf (k) exp(−2Bk2) where N
is the number of atoms gives what are called the unitary structure factors:

U(k) = 1/N
∑

l

exp(2π ik · rl). (2)

In real space we therefore have

u(r) = 1/N
∑

l

δ(r − rl) = Nu(r)2 (3)

or, alternatively, in reciprocal space:

U(k) = N
∑

h

U(k − h)U(h) (4)

If we know the phases of U(k − h) and U(h), we can therefore generate the phase for U(k).
In addition, if we guess the phases for the different reflections, we can use the difference in
the phase (and amplitude) that we estimate from equation (4) and the phases that we started
with to gauge how good that particular set of phases is. The ‘true’ set of phases has to obey
equations similar to equation (4)—i.e. they cannot be totally random.

The above equation, which was first derived in a slightly different form by Sayre [25], is
true for a structure composed of infinitely well resolved equal atoms. Unfortunately, this is
never the case in practice. With some changes we can generalize it for real data with a limited
resolution. Consider instead the form

F ′(k) =
∑

k

A(k)f (k) exp(2π ik · rl) exp(−Bk2) (5)

where A(k) is a ‘window function’ that will be defined below. We consider that A(k) is a real
function with positive values for a region of interest where the data are available (e.g. a disc
in two dimensions or a sphere in three), and zero outside this. After dividing by the (known)
structure factor and temperature factor term, we have a slightly different form in real space:

u′(r) = 1/N
∑

l

a(r − rl) (6)

where a(r) is the Fourier transform of A(k), the effective atom. Suppose further that there
exists some operator O such that

O[a(r)] = a(r). (7)
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Provided that the effective atoms at different locations do not overlap, it follows immediately
that

O[u(r)] = u(r). (8)

a generalization of equation (3). For any particular operator (which could be the simple square
as in equation (3), but does not have to be) equation (7) defines the function A(k). Provided
that it exists (in some cases it does not), we have a generalization that is independent of any
resolution limits.

An alternative approach is to look at the same question using statistics and probabilistic
relationships which are relatively insensitive to limited resolution. To illustrate these, consider
the product

U(k − h)U(h) = 1/N2
∑

l

exp(2π ik · rl)
∑

m

exp(2π ih · [rm − rl]). (9)

If the atoms are randomly distributed, the most probable value of the second sum is unity, so

U(k) ∼ N〈U(k − h)U(h)〉. (10)

Let us next consider

|U(k)−NU(k − h)U(h)|2 = |U(k)|2 +N2|U(k − h)U(h)|2
−2N |U(k)U(k − h)U(h)| cos[φ(k)− φ(k − h)− φ(h)] (11)

where φ(k) is the phase of U(k). In a statistical sense we will have a distribution of values. A
standard theorem in statistics is the central limit theorem: all distributions tend towards being
Gaussian. Hence the probability takes the limiting form

P(U(k)−NU(k − h)U(h)) ∼ C exp(−|U(k)−NU(k − h)U(h)|2) (12)

where C is a normalization constant. Taking all the amplitudes as known we can reduce this
to what is called the Cochran distribution [26]

P(U(k)−NU(k − h)U(h))

∼ C exp(2N |U(k)U(k − h)U(h)| cos[φ(k)− φ(k − h)− φ(h)]). (13)

If the unitary structure factors are large, the sum of the phases

φ(k)− φ(k − h)− φ(h) ∼ 2nπ n = 0, 1, 2, . . . . (14)

This is known as the triplet phase relationship, abbreviated as
∑

2. It is essentially the same
as the unitary Sayre equation described earlier, derived in a statistical sense. By considering
different powers or combinations of structure factors others can be derived. The triplet is
generally considered the most useful for bulk crystallography, although the next term (called
a positive quartet) has been used to solve some structures [17–20].

In practice [13, 15, 16] we use a variant of the generalized Sayre equation given in
equation (8). The main information about the scattering of an atom is in the region near
to its centre, so we want to emphasize the strong central peak, not any weak features far away.
The operator therefore has to be sharpening: reinforce large regions and reduce weak ones.
We also want it to be as unbiased as possible. The null hypothesis, i.e. the case without any
information, would be a completely flat real-space form. The least biased case would then
minimize the information for a Kullback–Liebler metric (e.g. [27]) relative to this, i.e.

d(u(r) ≡ 〈u(r)〉) =
∑

r

u(r) ln{u(r)/〈u(r)〉} −
∑

r

u(r) +
∑

r

〈u(r)〉. (15)

Consider the operator

O[u(r)] ≡ u(r) ln{u(r)/〈a(r)〉} u(r) > 0 ≡ 0 u(r) < 0 (16)
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where 〈a(r)〉 is the expectation value (mean) for a single atom-like feature. With some scaling
term α, if

O[u(r)] = αu(r) (17)

we have an atomistic-type constraint which also combines the idea of minimum information
(minimum bias) and sharpening since it minimizes the metric in equation (15). We convert
this to an iteration of the form

u1(r) = O[un−1(r)] ≡ un−1(r) ln{un−1(r)/〈a(r)〉} un−1(r) > 0

≡ 0 un−1(r) < 0 (18)

whereu1(r) is the estimate for an improved charge density which is projected onto the observed
structure factor moduli as well as any other constraints.

The particular form of a(r) is determined to satisfy equation (17) exactly. This is done in
practice by a Picard iteration of the form

an(r) = βan−1(r) ln{an−1(r)/〈a(r)〉} (19)

for the nth iteration, with β chosen to minimize
∑ |An(k)− βAn−1(k)|2. The actual form is

very close to (in reciprocal space)

A(k) = 1 − k/kmax. (20)

A subtle, and important question is how to determine the scaling term α. We have some
experimental structure factors, and for these we will always correct the modulus to the known
values. We also have unmeasured reflections, and we want the scaling term to provide
reasonable estimates of the moduli of these. For this we can find the value of the scaling
by minimizing∑

k

|αU 1(k)− Un−1(k)|2 (21)

for all the measured structure factors. (Using both the measured and unmeasured structure
factors to determine the scaling is not very stable.)

There is no reasonable expansion of the Fourier transform of the logarithm, so the operation
is done in real space. With relatively little extra cost in computer speed, one can encode a second
operation into the imaginary part of the function when doing the inverse Fourier Transform.
What we currently use for this second operation is

U 2(k) = W(k)F−1{−un−1(r) ln[Nun−1(r)]} (22)

with F an abbreviation for a Fourier transform, where W(k) is defined as

W(k) = A(k)/F−1{−a(r) ln a(r)} (23)

This is similar to forcing a combination of atom-like features to maximize the entropy. Similar
to the minimum information, a scaling term is constructed from a least squares fit. This pseudo-
maximum entropy approach for a second operator works better than a positivity constraint that
was used previously.

The figure of merit (FOM) used is then the least-squares error for the minimum information
which is generated at the same time as the scaling. The structure of the overall algorithm is as
follows:

(1) Include phases for some of the stronger reflections.
(2) Use the minimum entropy iteration to obtain an improved estimate for the wave, generating

the FOM and rescaling the values.
(3) Use the pseudo-maximum entropy iteration to obtain a second estimate, also appropriately

rescaled.
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(4) Combine the two to form a new, intermediate estimate.
(5) Over-relax the phases and correct the known structure factor moduli to give a new estimate.
(6) Go to (2) and continue the iteration provided that the FOM is reducing. It should be noted

that the operators involved are not unconditionally contractive, so the iteration will not
converge beyond a certain point after which the FOM often increases. Since we only seek
an approximate solution this is not a problem.

An important feature of the algorithm is the interpolation power of the entropy-type
formulation, which couples many different reciprocal space values. The logarithm is a highly
nonlinear function which is equivalent to considering not just square terms (as in the Sayre
equation earlier) but also cubic contributions and many higher-order powers. This intrinsically
builds in interpolation of the values for the reflections which have not been measured, a
requirement for surfaces.

3. Genetic algorithms

The previous section gave a brief background to the basic ideas and the algorithm that we use
in practice. If, independent of the starting phases, we could guarantee to end up with the same
final solution, the overall problem would be relatively simple. Unfortunately this is not the
case. Rather than there being just one minimum, i.e. the best FOM into which all iterations
find, in most cases there are multiple minima. It is not true that the smallest FOM is always
the correct solution, but one can say with confidence that the correct solution will be among
the top five to ten unique solutions

One therefore has to test a relatively large number (1000–10 000) of different starting
points for the analysis and collect the best solutions. These are then the models against which
the data is quantitatively refined. To handle this, we use a genetic algorithm [14]. These are
good at finding approximate solutions, and work exceptionally well in finding multiple local
minima.

Genetic algorithms (e.g. [28]) use an approach very similar to natural evolution. Writing
the set of phases as a binary string or chromosome, the concept is to look at a population
of chromosomes. For each of these one evaluates the FOM. Taking these chromosomes as
‘parents’, the concept of natural selection (better FOMs preferred) is used to select which
parents can reproduce. New children are next created by crosslinking, i.e. using part of one
parent, part of the other. At this stage mutation of some of the bits can also be performed,
although this is generally a weak phenomenon which can be neglected.

The basic structure of any genetic algorithm is, starting with some population, to calculate
the FOM for each, produce new children and continue cycling until a reasonable convergence is
achieved. Unfortunately, without some additional steps they do not work for finding multiple
local minima. If the algorithm finds one reasonably good set of phases early on, it may
produce many copies of the good schemata (or fragment of the chromosome) and drive others
out. There may be other phase combinations which give a good FOM; they can be lost by this
early dominance of one type. This is known as premature convergence.

Fortunately methods of preventing this from occurring are very well established. The
methods involve reducing the FOM weighting when selecting children by a number that
depends upon how similar the particular chromosome is to others in the population. One can
also select parents in part depending upon how similar they are. In addition, rather than using
just one population, it is standard to use more than one with different criteria for choosing
the next generation of children, what is called niche specialization. With careful use of these
additional steps the algorithm is remarkably powerful, performing parallel optimization to give
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a representative sampling of the feasible-set solution space; in fact finding multiple minima is
one its strengths. A weakness is that it may only find points close to the local minima rather
than their exact locations, but this is not an issue, since we only want approximate solutions.
Rather importantly, in general the size of the population that one needs scales approximately
linearly with the number of variables, not as the square as in most optimization methods. This
makes this approach very useful for larger problems.

The particular algorithm that we currently use involves the following steps.

(a) Produce three different initial random populations. There are some advantages to making
these initial populations cover the solution space as evenly as possible. One can do this
in some cases using an error-correcting code to chose the initial population, or by pruning
the population of members which are too similar. Unfortunately it is very expensive in
computer time to generate a truly well dispersed initial population.

(b) Cycling between the three different populations, calculate the FOM for each member.
(c) Produce new children by a different method for each population. The three we use are the

following.

(1) Choose the first parent with a probability weighted by its FOM times a cross-
correlation metric of how similar it is to the other members of the population. Choose
the second parent by how similar it is to the first parent as well as its weighted FOM.

(2) Choose the first parent as in (1), but with a different weighting for how similar it is
for the second parent.

(3) Choose both parents using just their weighted FOMs.

(d) Mutate the bits in a few of the children (mutation is not an important operator).
(e) Every other generation, reintroduce a small number of the best solutions found to date

using the initial phases.
(f) In the alternating generations to (e) above, reintroduce a small number of the best solutions

to date using the final phases.

The end result will be a large list of FOMs versus initial phases. One generally obtains
bunches of solutions which are very similar; a cross-correlation test can be used to find the
ones which are genuinely different. These are then used as the ‘models’ for the approximate
location of atoms, and refinements are then performed. (Very often the smallest FOM is a very
good approximation to the true surface charge density (or electrostatic potential), although this
cannot be guaranteed.

4. Solving surfaces in three dimensions

Three-dimensional surface structures are in some respects harder, and in others easier to solve
than a two dimensional projection. Although the data are less complete (a small fraction of
the total possible measurements are available), atoms never overlap in three dimensions (they
can in projection) and there are some special aspects of surfaces that can be exploited.

A three-dimensional surface has no periodicity in the direction normal to the surface,
rather a continuous intensity distribution in reciprocal space. This is generally sampled at
some fixed set of values with a given increment of ��. The first step is to create an artificial
supercell in real space corresponding to this sampling, i.e. a cell size of 1/��.

We can also generally estimate the extent normal to the surface where there are substantial
displacements away from the bulk positions, for instance by using the Patterson function. Let
us call this distance L. We therefore have as an additional constraint in the problem [16] that

ρ(r) ∼ 0 − L/2 < z < L/2. (24)
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Table 1. List of published surface structures solved at Northwestern in projection (two dimensions)
by direct methods. ∗ marks structures analysed as calibration tests.

Structure Data Reference Atoms

Si(111)–(
√

3 × √
3)R30◦ Au∗ electron [1] 2

Si(111)–(5 × 2) Au∗ electron [1] 5
Si(111)–(7 × 7)∗ electron [2] 14
Si(111)–(6 × 6)∗ Au x-ray [3] 15
TiO2(100)–1 × 3 x-ray [4] 4
Si(111)–(3 × 1) Ag electron [5] 5

Si(111)–(
√

3 × √
3)R30◦ Ag∗ electron [6] 2

Ge(111)–(4 × 4) Ag x-ray [7] 10

MgO(111)–(
√

3 × √
3)R30◦ electron [8] 1

MgO(111)–(2 × 2) electron [8] 2

MgO(111)–(2
√

3 × 2
√

3)R30◦ electron [8] 3

Ni(111)–(5
√

3 × 2) S∗ x-ray [9] 5

Cu(111)–

∣∣∣∣
4 1

−1 4

∣∣∣∣ S∗ x-ray [9] 3

Cu(110)–p(4 × 1) Bi∗ x-ray [9] 3
Ge(111)–(3 × 1) Ag electron [10] 5

Table 2. List of surface structures solved in three dimensions at Northwestern by direct methods.
∗ marks structures analysed as calibration tests.

Structure Reference Atoms

Ge(111)–(3 × 1) Rb∗ — 4
Si(111)–(4 × 1) In∗ — 4
Si(001)–(4 × 3) In — 10
NiO(111)–(2 × 2) [11] 4
InSb(001)–c(2 × 8) [12] 12
GaAs(001)—c(2 × 8) [12] 12
InAs(001)–c(2 × 8) [12] 12

This is a strong constraint (known as a ‘support constraint’), which has been extensively
analysed in the image processing literature [29]. One additional aspect is that we do not need
to know all the phases, just a subset of them. In particular, from the sampling theorem,

F(h,k, l) =
∑

n

F (h,k, n/L) sin(π [l − n/L])/π [l − n/L] (25)

where h and k are reciprocal lattice vectors in the surface plane. Therefore the ‘true’ variables
in the problem are not the phases of all the reflections, only a much smaller subset spaced by
1/L in reciprocal space. This reduces the dimensionality of the problem, and one can also use
equation (25) in the first cycle to expand from the smaller subset to the full set of values in the
first iteration.

This raises one issue special to the case of surface data—how many independent
measurements are there? The Patterson function spans a width of 2L Å; outside this region
it will be zero. The sampling theorem tells us that if we have some function which is only
non-zero for a width of 2L, it is fully defined by a sampling in reciprocal space of 1/(2L).
However, in a typical surface x-ray diffraction experiment measurements are made with much
finer sampling than this, i.e. the data are oversampled. A good case can be made that the number
of truly independent measurements is given by the sampling theorem step 1/(2L), which is
generally much smaller than the number of measurements. It may well be that some published
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Figure 1. Charge density maps calculated using the 2D code corresponding to (a) p3 and (b) p3m1
symmetries. The primitive unit cell is indicated with solid lines (a = b = 5.8970 Å, g = 120).
White regions correspond to high charge density, the probable locations of atoms.

Figure 2. Contour maps obtained from 3D code for P3m1 symmetry. Shown are two out of 39
‘slices’ along the z-axis, separated by 2.257 Å; (a) shows the top (first) Ni layer with three-quarters
of the Ni atoms missing, and (b) shows the underlying (third) Ni layer with one-quarter of the Ni
atoms missing. The primitive unit cell is indicated with solid lines (a = b = 5.8970 Å, g = 120).
The dense contour regions (essentially black) are the sites of the Ni atoms.

three-dimensional surface structures have had far too few independent measurements and are
therefore suspect (or wrong).

5. Examples

Solving structures in projection with two dimensional data has been fairly well covered in
the literature and will not be discussed in more detail here. Table 1 gives an overview of the
cases that we have analysed to date. Three dimensions are easier in principle since atoms can
overlap in projection (which breaks the assumptions behind the generalized Sayre equation,
although not the statistical methods). However, in practice they are much harder because a
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Figure 3. (a) Top view of the oxidized p(2 × 2)NiO(111) surface structure obtained by direct
methods analysis. (b) Side view of the structure. The solution is characterized by one-quarter
of the Ni atoms removed from the second layer and put on the surface in a 2 × 2 configuration
(Schottky defect formation).

smaller fraction of the intensities have been measured.
Table 2 summarizes the three-dimensional surfaces that we have examined to date. A

simple example is the NiO(111)2 × 2 surface [11]. The two dimensional projection showed
two possible solutions (see figure 1), one with a trimer of strong scatterers (candidate Ni sites),
the other with four. The three-dimensional analysis (figure 2) indicated that the trimer solution
was incorrect, and gave two main Ni sites separated normal to the electron beam. The sites of
the oxygen atoms were not apparent in the maps, but plausible locations could be inferred and
then tested by refinements. For reference, figure 3 shows the final structure after refinement
against the experimental data.

6. Discussion

Crystallographic direct methods are very powerful model-independent methods for solving
surface structures. Provided the experimental data are good enough, it is relatively easy to
obtain a good initial model for the structure in either a two dimensional projection or in three
dimensions. More complicated structures with many atoms are not, in principle, a problem,
and in fact the statistical relationships work better, hence the algorithms should work better.
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Our experience is that the complexity of the calculations scales roughly linearly with the
complexity of the structure, so one does not need access to very fast computers.

The principal current limitation is the quality of the experimental data that is available,
particularly in three dimensions. A standard benchmark in crystallography is that one should
have 10–20 measurements per variable to have any confidence in the final results. Using three
positional variables per atom and one temperature factor to properly determine a structure with
ten independent sites requires at least 400 unique measurements (with the appropriate 1/2L
sampling as mentioned above). This is more measurements than is currently available in some
cases. As a consequence, one may not be able to uniquely determine all the sites, particularly
those of lighter elements. In many cases a reasonable guess based upon chemical rules can be
used, but this can be dangerous. Hopefully with the increased use of brighter x-ray sources
more complete data will become available and complicated structures, e.g. proteins at surfaces,
will become amenable to study.
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